X



Anarchy板 ボクシング連盟

■ このスレッドは過去ログ倉庫に格納されています
1アナーキーさん
垢版 |
2019/06/21(金) 23:05:16.18
(´・ω・`)歴史のおとこ♪
54 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:14:18.53
https://mixch.tv/u/13857018
2019/06/22(土) 14:14:40.69
      ゙::::::.:::::7::/:::::.:::ソ'i:::::::.::::/     ___ }:::::.:::::.::::V:::::{!:::::|
     j:::::: ::::::{:'ー::xく  |:::::.:::/ ,ィ≠゙´  1.::::.::::.::::l::::/}::::::j
     l:::::: ::::::|::::/  ` {:::.:/      _,.。xz-};y::::: :::::|:/:::'::::::}
     {: :::i:::.::状F'T'トrx、V:{    /^fi苡_}゙}イ:::}:::: ::::|:::/:::::.::|
     1::::{::: ::ト、ヾ YIid'}' `!__,n   V゚ソ7トY:::':::: ::::j:7:i:::: ::i
      i:::::Y::::<{i.  ヾニ' .r}l'⌒Vヘ   `_^,ノ^:/:::::.:::::'/::::|:::::.:}
     1::::}:::;::Nト===    `¨^^`^´ ./:/:::: :::::/!:::::::!::::::l
.     1:::|::ヘ::V!       '        /イ::::: :::::/::!:::: ::i:::::j
     |:::}::::::\ik、    ___ ,..__   .ノ'/::::::.::::::fi:::{:::::.:::V::}
      .i:7:::::.::::`ト.ヽ、   `:ー:'´    .ィ:::;::: :::::‖Vl;:::::ヘ::k|
.      リ::':::::::1:::'{.   丶、    ,..'^/::/:::::.:::‖:;:Vl:::::.::ト::i、
2019/06/22(土) 14:15:10.41
                  ,〈_人_〉 0。 /   !    !    ヽ〈_人_〉∨
                   /  /     /   l! 0 |  | : |      ',
              /   | |    イ   ll!  │  | : |    |  |
                 〃  | l/| / レ'|_,.| 八 .,,_|\│ : |    |  |
            /:|   :|  |ー,.二., 」   Y_」,.二.,一|    |  |
              / |   :|  | 〃,_ァ、      ,_ァ、ヾ |│  |  |
.             /  :|   :l/)「 乂ツ  |l==l|  乂ツ │|  |  |
         /  .:| │.::|| 〈:ハ‐/////┘,└/////‐ ノ∧  |  人
        /  ...: | |.::::|  ー=ミ          /  ∧ V  丶
      /  /  :. ::::人      `ヽ ⊂ニ⊃ /    ハ ∨ 、  \
     /  / }    ハ ∨  ー=、   ト __ イ     ,. ‐=}  l  ∨.\ \
57 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:15:10.72
https://mixch.tv/u/13225111
2019/06/22(土) 14:15:36.96
    ,': : : : : : : :|: : : :,': : : : :‖: : : /:|: : : : : : : :}: :i ! : : : | : : : i |
    |: : : i: : : : :', : : i: : : : : l: : : : :レヘ: : : : : : :ノ: ll l: : : : | : : : | |
    ', : : |: : : : :ハ: : {: : : : :斗-\┘  ̄ ̄ ̄ ̄ 7ー‐┤ : : i: !
     i : ,': : : : :i: :i: :|: : : : :|    丶、      _,ノ    |: : : 八!
     |: /: : : : :,' : | 八 : : : !  ==≠= `¨′ ′==≠ /: : /: :i|
    |/: : : : :/: : :V (:∨: : l  (   ( / / / / (   (/: : /: : : !
    / : : : : /: : : : ト、ゝ\ :|   )   )    ′ )  /: / :|: : :|
   /: : : : /.: : : : : ! `ーァ\ ( /  ̄` ー‐'⌒ヽ// /: :i : : i
  / : : :/: : : : : : : ノ __,/_ \ (         ノ.::::/: : :|: : : |
/ : : /: : : : :.::::::::ノ__/   `丶> ..        ィf:::::::/: : : :i: : : :|
: : :::::/: : : ..:::::::/リ_`ヽ、__ \:: /` ー‐'' ´  |::::/: : : : :!: : : :|
2019/06/22(土) 14:16:00.45
        ,'::::::::::::::::::;/::::::::/   \:::::ヽ:::::::::::l::::::::::::::::::.
       ,':::::::::::::::::::i:::::; く      ,>、::::\:::::l:::::::::::::::::::.
         l::::::::::l:::::::::レ'_  `     ´  `ー-斗:::::::,!:::::::::!
       l::::::::::l::::::::l ,ォラ:、、      ィZ≦.、 l:::::/:::::::::::!
         V::::::::V::::| l-i;:::::h!      l _:::::rl リ;/::::::::::::;'
          ∨::::::ヽ::l ヽ)ニノ        ヽ<ニノ 1::::::::::::;''
         ヽ::::::::ヽ!                  ,'::::::: :::/
             V:::::ヘ      . .     U./::::::::::/
             l:::::::::ヽ、   、__,.   ,.イ::::::::::;、:\
         ∠l:::::::::;:イ:>、    ̄   ,ィ:::::::::::i::::::l  ̄
           l:::/ レ'  l`   ._,  ´ l \:::::ト、:::l
2019/06/22(土) 14:16:03.28
最近RINAAAAに貢いでる奴らが動きすぎてて笑っちゃったからね
61 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:16:05.33
https://mixch.tv/u/13169521
2019/06/22(土) 14:16:30.14
       √ /.:: :|.:: .:: :|.:: .:-‐/―- \.:(\.:: .::-‐-.: .:: .:|.:: .:: .:.
       |/.:: .:: .:|.:: .:: :|.: / |/     \ ヽ.::.:∧.:: .:: .:: .:: .:: :.
       |.::.|.:: .:: .:|.:: .:: :|:/             ∨  ',.::/.:: .:: .|.:i
       |.::.|.:: .:: .:|.:: .:: :|  _,,,....,,_         _,..,_  V.:: .:: .:: |.:|
        .: |.:: .:: .:|.:: .:: :|  "⌒^⌒      ⌒^'' 〈.:: .::/.::∧|
         ヽ|.: /⌒.:: .:: 人 ぃハい        , ぃぃ_彡イ |/
         |.八 ( |.:: .:: .:: \              ⌒T ::|
         |.:: ..::八.:: .:: .:|'⌒ヽ    \     ノ     八 |
         人.:: .::\ .:: .::.|         `¨⌒´    イ.: .::|
        /.:: .:: .:: .:: ∧.::.:ト _           / :|.:: .:,
.     /.:: .:: .::/.::./.::∧.::〈  ニ=- ..,_.,  . :: .::\ | .:./
63 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:17:09.27
13155182
2019/06/22(土) 14:17:14.08
モンチ(ザキクマ)さん寝たね
2019/06/22(土) 14:17:34.10
  // /::::.!/::::::::|:::::::||:::l│:| !l:::::::::l ヽ:::::.!ヽ:::::::ヽ:::::::.!: !:::::|
.  l:/ !:::::|!:::::!::::|::::::| |:.!-!::|‐|:!::::::::l ゝ::::!-ヽ::::::.!::::::::!: !::::|
  |l  .!:::/|::::::l:::::!:::::l .!:ト .|::|‐ !:l:、:::.!. -ヽ:ヽ ヽ:: !:::::::|、!::::!
  l  |:::| |::!:::.!::::|:::レ,===、、 ヽ:ヽ::::| ,ィ===、ヽ:|:::::::!::::::.!
     |: ! |::! :::ト、!V | '゙;:::::|   ヽ\:!´| '゙;::: | l/ヽ::::|::::::.!
.    !:| |ヽ:::|: .!   lヽ_ノ:!      ヽ !ヽ_ノ:l  /:ヽ:!::::::|
     !|  |:ヽ::!:: !  ー-'        ー-'  /::::::!::::::::l
        !::::ヾ:|:ヽ       ′         /::::::::|:::::::.|
.       |::::::::::|::: :\     ー--‐     /:|:::::::::!::::::: !
       .!::::::::::|:::::::|::`丶、       / ::::::|:::::::::|:::::::::.!
      │:::::::::|:::::::|:::, -‐ i` ー-‐ ''´ト--、:::.!:::::::::|::::::::::.!
66 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:18:24.15
https://mixch.tv/u/12832640
2019/06/22(土) 14:19:05.20
今頃インセプションだね
68 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:19:48.98
やかいまできる?
3あやかブリッジできる?
3あやか体柔らかいですか?
3あやか習い事とかしてる?
3あやか特技とかある?
3あやか聞こえた!!!
5ゆらみんなかわいい
5ゆらみんな何年生??
2019/06/22(土) 14:20:12.50
                         /: : : :/ : / : : : : : : : `\ \
                       / : : : : / : /: :,:ィ: ;イ: :| : : : : \ ヽ
                         / : : : : / : /:-/-|/、|: ,:! !: : : |: : :\|ヘ
                     / : : : _;/: : :|:,x≠ミ、|/ |;ハ : /|: : : l: | :ハ
                       /: : : / /: : : /んィリ}     |;/-l、: /:/: : :!
                   /: : : : :、i : : :|ヒ:少′    ,r=ミx|:∨: : : : l|
                      ,: : : : : : : | : : : i  ̄`     んィ} }}イ: : : :|: ;リ
                /イ: : : : : : | : : : l r       t少′/ : :/|/
                      ∨|八|:,ィ| : |: :j |\   '  `  ': /
               /´ ̄`ト-r'´ |: ;ハ/、 `  >     / : |
             /    |: |   .|/  ./\ ____ . イ : : :|
2019/06/22(土) 14:21:19.90
いい太ももしてやがるけつかる
71アナーキーさん
垢版 |
2019/06/22(土) 14:25:35.10
東京大学の戸野倉賢一教授と秦寛夫大学院生博士課程3年は次世代自動車導入により夏季の関東地方
においてオゾン濃度増減に地域差があることを明らかにした
光化学オキシダントの生成には揮発性有機化合物VOCと窒素酸化物NOxが関与し人為発生源とし
て自動車の排出ガスが知られている次世代自動車の導入により自動車からの二酸化炭素の排出削減な
らびにVOCとNOxの排出削減が期待されているがそれに伴う環境影響評価はほとんど実施されて
いない
研究グループはハイブリッド車やゼロエミッション車温室効果ガスや大気汚染物質を排出しない電気
自動車や燃料電池車などの次世代自動車の導入により生じる夏季の関東1都6県でのオゾン濃度変化
について大気化学輸送モデルを基にしたシミュレーションにより検討した
その結果現在の乗用車をすべてハイブリッド車に置き換えた場合は人口密集地である首都圏を中心に
オゾン濃度が上昇し郊外ではオゾン濃度が低下することが判明一方で乗用車すべてをゼロエミッショ
ン車に置き換えた場合には首都圏ではオゾン濃度はほぼ変わらないという結果を得た
また乗用車と重量車トラックを全てハイブリッド車やゼロエミッション車に置き換えた場合には乗用
車すべてをハイブリッド車にした場合と同様に首都圏を中心にオゾン濃度が上昇し郊外ではオゾン濃
度が低下することが確認された
今回の結果は次世代自動車の導入は首都圏を中心にオゾン濃度の削減については有効でない場合が存
72アナーキーさん
垢版 |
2019/06/22(土) 14:25:35.83
東京大学の戸野倉賢一教授と秦寛夫大学院生博士課程3年は次世代自動車導入により夏季の関東地方
においてオゾン濃度増減に地域差があることを明らかにした
光化学オキシダントの生成には揮発性有機化合物VOCと窒素酸化物NOxが関与し人為発生源とし
て自動車の排出ガスが知られている次世代自動車の導入により自動車からの二酸化炭素の排出削減な
らびにVOCとNOxの排出削減が期待されているがそれに伴う環境影響評価はほとんど実施されて
いない
研究グループはハイブリッド車やゼロエミッション車温室効果ガスや大気汚染物質を排出しない電気
自動車や燃料電池車などの次世代自動車の導入により生じる夏季の関東1都6県でのオゾン濃度変化
について大気化学輸送モデルを基にしたシミュレーションにより検討した
その結果現在の乗用車をすべてハイブリッド車に置き換えた場合は人口密集地である首都圏を中心に
オゾン濃度が上昇し郊外ではオゾン濃度が低下することが判明一方で乗用車すべてをゼロエミッショ
ン車に置き換えた場合には首都圏ではオゾン濃度はほぼ変わらないという結果を得た
また乗用車と重量車トラックを全てハイブリッド車やゼロエミッション車に置き換えた場合には乗用
車すべてをハイブリッド車にした場合と同様に首都圏を中心にオゾン濃度が上昇し郊外ではオゾン濃
度が低下することが確認された
今回の結果は次世代自動車の導入は首都圏を中心にオゾン濃度の削減については有効でない場合が存
2019/06/22(土) 14:25:37.29
         .{ .:::::::/  . :::::::::::/       {:::::::::::::.  ∧
         ,'-=彡  ...:::_ __/__       .∨__:::::.. ーミ、     
        /彡´ ::::...::´/ /   `     ´ .∨  `::::...  \
    -=ニ三 __ 彡 ノテ=─、      , =─.、ヘ_::::::  >、_
        } ̄::::}:::::/}.く {_ノ:::::}       {_ノ:::::} ゝミ_} ̄ ̄ ̄ ̄   
       / ::.:::/{}:::::::N  ヒ三ソ       .ヒ三ソ ノ{  ノ/
       ,' /.:::/::丶}}∧                / / }}
       /./ ::::{:::::::{{.`八         '      ./´{::::  }
      // :::::i:::::::{{:::::::::\     _ _     人 }:::: }.i
      {{i ::::::.i::::::/::::::::::::: > 、       , <} }::::::i:::: i i
      ii } __i_{_::::::/ { \ ` - _   ィl、:::::::::::l::|::::::i::::::|:|
74アナーキーさん
垢版 |
2019/06/22(土) 14:25:37.65
東京大学の戸野倉賢一教授と秦寛夫大学院生博士課程3年は次世代自動車導入により夏季の関東地方
においてオゾン濃度増減に地域差があることを明らかにした
光化学オキシダントの生成には揮発性有機化合物VOCと窒素酸化物NOxが関与し人為発生源とし
て自動車の排出ガスが知られている次世代自動車の導入により自動車からの二酸化炭素の排出削減な
らびにVOCとNOxの排出削減が期待されているがそれに伴う環境影響評価はほとんど実施されて
いない
研究グループはハイブリッド車やゼロエミッション車温室効果ガスや大気汚染物質を排出しない電気
自動車や燃料電池車などの次世代自動車の導入により生じる夏季の関東1都6県でのオゾン濃度変化
について大気化学輸送モデルを基にしたシミュレーションにより検討した
その結果現在の乗用車をすべてハイブリッド車に置き換えた場合は人口密集地である首都圏を中心に
オゾン濃度が上昇し郊外ではオゾン濃度が低下することが判明一方で乗用車すべてをゼロエミッショ
ン車に置き換えた場合には首都圏ではオゾン濃度はほぼ変わらないという結果を得た
また乗用車と重量車トラックを全てハイブリッド車やゼロエミッション車に置き換えた場合には乗用
車すべてをハイブリッド車にした場合と同様に首都圏を中心にオゾン濃度が上昇し郊外ではオゾン濃
度が低下することが確認された
今回の結果は次世代自動車の導入は首都圏を中心にオゾン濃度の削減については有効でない場合が存
75アナーキーさん
垢版 |
2019/06/22(土) 14:25:38.65
東京大学の戸野倉賢一教授と秦寛夫大学院生博士課程3年は次世代自動車導入により夏季の関東地方
においてオゾン濃度増減に地域差があることを明らかにした
光化学オキシダントの生成には揮発性有機化合物VOCと窒素酸化物NOxが関与し人為発生源とし
て自動車の排出ガスが知られている次世代自動車の導入により自動車からの二酸化炭素の排出削減な
らびにVOCとNOxの排出削減が期待されているがそれに伴う環境影響評価はほとんど実施されて
いない
研究グループはハイブリッド車やゼロエミッション車温室効果ガスや大気汚染物質を排出しない電気
自動車や燃料電池車などの次世代自動車の導入により生じる夏季の関東1都6県でのオゾン濃度変化
について大気化学輸送モデルを基にしたシミュレーションにより検討した
その結果現在の乗用車をすべてハイブリッド車に置き換えた場合は人口密集地である首都圏を中心に
オゾン濃度が上昇し郊外ではオゾン濃度が低下することが判明一方で乗用車すべてをゼロエミッショ
ン車に置き換えた場合には首都圏ではオゾン濃度はほぼ変わらないという結果を得た
また乗用車と重量車トラックを全てハイブリッド車やゼロエミッション車に置き換えた場合には乗用
車すべてをハイブリッド車にした場合と同様に首都圏を中心にオゾン濃度が上昇し郊外ではオゾン濃
度が低下することが確認された
今回の結果は次世代自動車の導入は首都圏を中心にオゾン濃度の削減については有効でない場合が存
76 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:25:41.35
東京大学の戸野倉賢一教授と秦寛夫大学院生博士課程3年は次世代自動車導入により夏季の関東地方
においてオゾン濃度増減に地域差があることを明らかにした
光化学オキシダントの生成には揮発性有機化合物VOCと窒素酸化物NOxが関与し人為発生源とし
て自動車の排出ガスが知られている次世代自動車の導入により自動車からの二酸化炭素の排出削減な
らびにVOCとNOxの排出削減が期待されているがそれに伴う環境影響評価はほとんど実施されて
いない
研究グループはハイブリッド車やゼロエミッション車温室効果ガスや大気汚染物質を排出しない電気
自動車や燃料電池車などの次世代自動車の導入により生じる夏季の関東1都6県でのオゾン濃度変化
について大気化学輸送モデルを基にしたシミュレーションにより検討した
その結果現在の乗用車をすべてハイブリッド車に置き換えた場合は人口密集地である首都圏を中心に
オゾン濃度が上昇し郊外ではオゾン濃度が低下することが判明一方で乗用車すべてをゼロエミッショ
ン車に置き換えた場合には首都圏ではオゾン濃度はほぼ変わらないという結果を得た
また乗用車と重量車トラックを全てハイブリッド車やゼロエミッション車に置き換えた場合には乗用
車すべてをハイブリッド車にした場合と同様に首都圏を中心にオゾン濃度が上昇し郊外ではオゾン濃
度が低下することが確認された
今回の結果は次世代自動車の導入は首都圏を中心にオゾン濃度の削減については有効でない場合が存
77アナーキーさん
垢版 |
2019/06/22(土) 14:25:44.22
東京大学の戸野倉賢一教授と秦寛夫大学院生博士課程3年は次世代自動車導入により夏季の関東地方
においてオゾン濃度増減に地域差があることを明らかにした
光化学オキシダントの生成には揮発性有機化合物VOCと窒素酸化物NOxが関与し人為発生源とし
て自動車の排出ガスが知られている次世代自動車の導入により自動車からの二酸化炭素の排出削減な
らびにVOCとNOxの排出削減が期待されているがそれに伴う環境影響評価はほとんど実施されて
いない
研究グループはハイブリッド車やゼロエミッション車温室効果ガスや大気汚染物質を排出しない電気
自動車や燃料電池車などの次世代自動車の導入により生じる夏季の関東1都6県でのオゾン濃度変化
について大気化学輸送モデルを基にしたシミュレーションにより検討した
その結果現在の乗用車をすべてハイブリッド車に置き換えた場合は人口密集地である首都圏を中心に
オゾン濃度が上昇し郊外ではオゾン濃度が低下することが判明一方で乗用車すべてをゼロエミッショ
ン車に置き換えた場合には首都圏ではオゾン濃度はほぼ変わらないという結果を得た
また乗用車と重量車トラックを全てハイブリッド車やゼロエミッション車に置き換えた場合には乗用
車すべてをハイブリッド車にした場合と同様に首都圏を中心にオゾン濃度が上昇し郊外ではオゾン濃
度が低下することが確認された
今回の結果は次世代自動車の導入は首都圏を中心にオゾン濃度の削減については有効でない場合が存
78アナーキーさん
垢版 |
2019/06/22(土) 14:25:47.82
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
79アナーキーさん
垢版 |
2019/06/22(土) 14:25:49.16
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
80アナーキーさん
垢版 |
2019/06/22(土) 14:25:50.97
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
81 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:25:53.17
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
82アナーキーさん
垢版 |
2019/06/22(土) 14:26:01.56
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
2019/06/22(土) 14:26:02.69
   i:.:.:.:.i.|:::|  i| ||i..::::|:i  i:::| |::ハ:|:::::::::::|::::::i::::::::|
  i   |.| i |il..:::::i::|゙、::::i゙、__.i::| |ハ||:::::::::::|::::::|::::::::゙、
  i    | .!:::i::::|!゙、;::::::i ヽ:! ヽヾ ̄ ̄ |::|:::::::|-、::|:::::::i、i
 i  ,,,::::|:::i::::|゙、|メヽ::::i  ヽ'´_,........_ |:i|:::::/`ヽ.}::::: i リ
. i ..::;::-|::i:::゙、:|'´ ー ヾ   彡‐'´ ̄`ノ'i::::/  /:::::i::|
..|/   |:::゙、::i゙、 .;==、       ,,,,,   i::/   ノ:::::/V
     i:::::::ヾ::、´,,,,, ,      """ u レ /i´:::::/゛
.     i::::::;w、:゙、""                 V'"`
      ゙、/  \丶   ー'´`   ,     ゙、ー-、______
          ヽ!`ー- __    , ´    /:.:.:.:.:.:.:.:.:/:.:./<ヽ
            ___`フ´_ヽ    /:.:.:.:.:.:.:.:.:./:.:/ ,;===、ヽ
84アナーキーさん
垢版 |
2019/06/22(土) 14:26:03.49
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
85アナーキーさん
垢版 |
2019/06/22(土) 14:26:05.00
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
86アナーキーさん
垢版 |
2019/06/22(土) 14:26:06.39
在すること大気質の改善にはその導入と同時に他の排出源からのVOCとNOx排出の同時削減が必
要であることを示唆するものとしている
寒い冬の朝口からハーッと息を吐く息が白く見えるこの白い息の正体は細かい水滴だ体から出てきた
息にはたくさんの水蒸気が含まれているそれが急に冷えてそれだけの水蒸気を含むことができない状
態になる空気が水蒸気を限度いっぱいまで含んでいる状態を飽和という吐いた息はそれを超えて水蒸
気を含んでしまっている過飽和の状態になるその多すぎた分が液体に戻って細かい水滴となり白い雲
のようになって目に見える
このときに欠かせないのがエーロゾルエアロゾルだエーロゾルとは大気中に漂う固体や液体の微粒子
のことだものを燃やしたときに出る黒いすすや工場の煙突などから排出される硫酸成分や硝酸成分か
ら変化したものもある過飽和の状態になった空気とエーロゾルが出合うと余分な水蒸気がエーロゾル
の周りにくっついて水滴になる
空の雲も白い息と同じしくみでできる雲は日差しを遮って地面に届く太陽熱の量を減らすし地面から
放射される熱を吸収する働きもある雲のでき具合は気象や気候の予測に大きく影響を与えるところが
現在の科学では雨を降らす雲の飽和過飽和エーロゾルの関係がじゅうぶんによくわかっていない雨雲
の中がどれくらい過飽和になっているのかという基本的な事柄さえわからなかったその推定に初めて
成功したのが東京大学の茂木信宏もてき のぶひろ助教らの研究グループだ東京沖縄での大気観測か
87 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:26:11.15
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
88アナーキーさん
垢版 |
2019/06/22(土) 14:26:13.67
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
89アナーキーさん
垢版 |
2019/06/22(土) 14:26:14.84
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
90アナーキーさん
垢版 |
2019/06/22(土) 14:26:17.19
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
91アナーキーさん
垢版 |
2019/06/22(土) 14:26:18.62
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
92 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:26:27.40
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
93アナーキーさん
垢版 |
2019/06/22(土) 14:26:28.78
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
94アナーキーさん
垢版 |
2019/06/22(土) 14:26:30.00
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
95アナーキーさん
垢版 |
2019/06/22(土) 14:26:31.37
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
96アナーキーさん
垢版 |
2019/06/22(土) 14:26:38.23
ら得た雲中の過飽和度は0.08%これまでは0.1%1%などと推定されていたそれよりはるかに
小さいほんのわずかな水蒸気の含みすぎが雲粒をつくり雨を降らせていたのだ
茂木さんらが注目したのは代表的なエーロゾルである黒色炭素つまり黒いすすだ地上付近の上昇気流
に含まれる細かい黒色炭素には小さいものも大きいものもあるそのサイズごとの個数の割合をまず観
測しておくそれを降ってきた雨粒に含まれる黒色炭素のサイズの割合と比較するどのようなサイズの
黒色炭素が優先的に雨粒になったかを検討しこの事実をいちばん適切に説明できる雲中の過飽和度を
推定した
黒色炭素は森林火災や家庭でまきを燃やすことなどで発生する大気中を漂う黒色炭素は太陽の熱を吸
収し雲粒を作るもとにもなるので気象や気候に影響を与える茂木さんらがコンピューターシミュレー
ションで調べたところ大気の過飽和度が0.08%の前後をほんの少し上下するだけで大気中にとど
まる黒色炭素の量が大きく変わることもわかった大気中の黒色炭素の量を計算で正確に求めたければ
大気の過飽和度をよほどきちんと知っておかなければならないという結果だ
大気はこのようにデリケートで複雑だ現在の科学でそのすべてが解き明かされているわけではないよ
くわからないながらもなんとかコンピューターで天気や気候の予測計算をするわからない部分はこれ
までの経験をもとにしてたとえば観測事実に合うように計算に使う数式を調整する科学的な細かいし
くみが必ずしもわかっていなくても調整してしまうそうした実用的な方法と大気のしくみの細部を詰
97アナーキーさん
垢版 |
2019/06/22(土) 14:26:41.76
める茂木さんらのような研究が両輪となって気象学は進歩していく
図 雨雲の過飽和度を観測する手法の模式図上昇気流の中の黒色炭素初期トレーサーと落ちてきた雨
粒に含まれている黒色炭素除去されたトレーサーのサイズの違いを調べそれらを比較することで雨雲
の水蒸気の含みすぎ具合過飽和度を推定する
海の生き物たちが暮らしていくための栄養は植物プランクトンが作り出しているプランクトンとは自
分で泳がずおもに流れに身を任せて移動する水中の生き物のことだ海面近くを漂うさまざまな種類の
小さな植物プランクトンは陸上の植物とおなじように太陽の光を使う光合成で二酸化炭素と水から栄
養分を作る栄養分を体に蓄えたこの植物プランクトンを動物プランクトンが食べるその動物プランク
トンを小さな魚が食べるそれを大きな魚が食べる最初に植物プランクトンが作った栄養はこの食物連
鎖で生き物全体を支えることになる
ここで大切なのは連鎖だ連鎖のどこかが欠けると本来の生態系は損なわれてしまう近年の急速な地球
温暖化で海水は温まっておりさまざまな形でこの連鎖がほころびる可能性が指摘されている英スウォ
ンジー大学のカムタン教授東京大学の高橋一生たかはし かずたか教授らの研究グループは日本沿岸
の動物プランクトンは海水温が21度を超えると急激に死にやすくなることを確かめた動物プランク
トンは海の生き物たちの食を底辺に近い部分で支えているためその変化は生き物全体の構成に大きく
影響するかもしれないという
98アナーキーさん
垢版 |
2019/06/22(土) 14:26:44.74
める茂木さんらのような研究が両輪となって気象学は進歩していく
図 雨雲の過飽和度を観測する手法の模式図上昇気流の中の黒色炭素初期トレーサーと落ちてきた雨
粒に含まれている黒色炭素除去されたトレーサーのサイズの違いを調べそれらを比較することで雨雲
の水蒸気の含みすぎ具合過飽和度を推定する
海の生き物たちが暮らしていくための栄養は植物プランクトンが作り出しているプランクトンとは自
分で泳がずおもに流れに身を任せて移動する水中の生き物のことだ海面近くを漂うさまざまな種類の
小さな植物プランクトンは陸上の植物とおなじように太陽の光を使う光合成で二酸化炭素と水から栄
養分を作る栄養分を体に蓄えたこの植物プランクトンを動物プランクトンが食べるその動物プランク
トンを小さな魚が食べるそれを大きな魚が食べる最初に植物プランクトンが作った栄養はこの食物連
鎖で生き物全体を支えることになる
ここで大切なのは連鎖だ連鎖のどこかが欠けると本来の生態系は損なわれてしまう近年の急速な地球
温暖化で海水は温まっておりさまざまな形でこの連鎖がほころびる可能性が指摘されている英スウォ
ンジー大学のカムタン教授東京大学の高橋一生たかはし かずたか教授らの研究グループは日本沿岸
の動物プランクトンは海水温が21度を超えると急激に死にやすくなることを確かめた動物プランク
トンは海の生き物たちの食を底辺に近い部分で支えているためその変化は生き物全体の構成に大きく
影響するかもしれないという
99アナーキーさん
垢版 |
2019/06/22(土) 14:26:46.16
める茂木さんらのような研究が両輪となって気象学は進歩していく
図 雨雲の過飽和度を観測する手法の模式図上昇気流の中の黒色炭素初期トレーサーと落ちてきた雨
粒に含まれている黒色炭素除去されたトレーサーのサイズの違いを調べそれらを比較することで雨雲
の水蒸気の含みすぎ具合過飽和度を推定する
海の生き物たちが暮らしていくための栄養は植物プランクトンが作り出しているプランクトンとは自
分で泳がずおもに流れに身を任せて移動する水中の生き物のことだ海面近くを漂うさまざまな種類の
小さな植物プランクトンは陸上の植物とおなじように太陽の光を使う光合成で二酸化炭素と水から栄
養分を作る栄養分を体に蓄えたこの植物プランクトンを動物プランクトンが食べるその動物プランク
トンを小さな魚が食べるそれを大きな魚が食べる最初に植物プランクトンが作った栄養はこの食物連
鎖で生き物全体を支えることになる
ここで大切なのは連鎖だ連鎖のどこかが欠けると本来の生態系は損なわれてしまう近年の急速な地球
温暖化で海水は温まっておりさまざまな形でこの連鎖がほころびる可能性が指摘されている英スウォ
ンジー大学のカムタン教授東京大学の高橋一生たかはし かずたか教授らの研究グループは日本沿岸
の動物プランクトンは海水温が21度を超えると急激に死にやすくなることを確かめた動物プランク
トンは海の生き物たちの食を底辺に近い部分で支えているためその変化は生き物全体の構成に大きく
影響するかもしれないという
100 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:26:50.21
める茂木さんらのような研究が両輪となって気象学は進歩していく
図 雨雲の過飽和度を観測する手法の模式図上昇気流の中の黒色炭素初期トレーサーと落ちてきた雨
粒に含まれている黒色炭素除去されたトレーサーのサイズの違いを調べそれらを比較することで雨雲
の水蒸気の含みすぎ具合過飽和度を推定する
海の生き物たちが暮らしていくための栄養は植物プランクトンが作り出しているプランクトンとは自
分で泳がずおもに流れに身を任せて移動する水中の生き物のことだ海面近くを漂うさまざまな種類の
小さな植物プランクトンは陸上の植物とおなじように太陽の光を使う光合成で二酸化炭素と水から栄
養分を作る栄養分を体に蓄えたこの植物プランクトンを動物プランクトンが食べるその動物プランク
トンを小さな魚が食べるそれを大きな魚が食べる最初に植物プランクトンが作った栄養はこの食物連
鎖で生き物全体を支えることになる
ここで大切なのは連鎖だ連鎖のどこかが欠けると本来の生態系は損なわれてしまう近年の急速な地球
温暖化で海水は温まっておりさまざまな形でこの連鎖がほころびる可能性が指摘されている英スウォ
ンジー大学のカムタン教授東京大学の高橋一生たかはし かずたか教授らの研究グループは日本沿岸
の動物プランクトンは海水温が21度を超えると急激に死にやすくなることを確かめた動物プランク
トンは海の生き物たちの食を底辺に近い部分で支えているためその変化は生き物全体の構成に大きく
影響するかもしれないという
101アナーキーさん
垢版 |
2019/06/22(土) 14:26:52.57
める茂木さんらのような研究が両輪となって気象学は進歩していく
図 雨雲の過飽和度を観測する手法の模式図上昇気流の中の黒色炭素初期トレーサーと落ちてきた雨
粒に含まれている黒色炭素除去されたトレーサーのサイズの違いを調べそれらを比較することで雨雲
の水蒸気の含みすぎ具合過飽和度を推定する
海の生き物たちが暮らしていくための栄養は植物プランクトンが作り出しているプランクトンとは自
分で泳がずおもに流れに身を任せて移動する水中の生き物のことだ海面近くを漂うさまざまな種類の
小さな植物プランクトンは陸上の植物とおなじように太陽の光を使う光合成で二酸化炭素と水から栄
養分を作る栄養分を体に蓄えたこの植物プランクトンを動物プランクトンが食べるその動物プランク
トンを小さな魚が食べるそれを大きな魚が食べる最初に植物プランクトンが作った栄養はこの食物連
鎖で生き物全体を支えることになる
ここで大切なのは連鎖だ連鎖のどこかが欠けると本来の生態系は損なわれてしまう近年の急速な地球
温暖化で海水は温まっておりさまざまな形でこの連鎖がほころびる可能性が指摘されている英スウォ
ンジー大学のカムタン教授東京大学の高橋一生たかはし かずたか教授らの研究グループは日本沿岸
の動物プランクトンは海水温が21度を超えると急激に死にやすくなることを確かめた動物プランク
トンは海の生き物たちの食を底辺に近い部分で支えているためその変化は生き物全体の構成に大きく
影響するかもしれないという
102アナーキーさん
垢版 |
2019/06/22(土) 14:26:54.01
める茂木さんらのような研究が両輪となって気象学は進歩していく
図 雨雲の過飽和度を観測する手法の模式図上昇気流の中の黒色炭素初期トレーサーと落ちてきた雨
粒に含まれている黒色炭素除去されたトレーサーのサイズの違いを調べそれらを比較することで雨雲
の水蒸気の含みすぎ具合過飽和度を推定する
海の生き物たちが暮らしていくための栄養は植物プランクトンが作り出しているプランクトンとは自
分で泳がずおもに流れに身を任せて移動する水中の生き物のことだ海面近くを漂うさまざまな種類の
小さな植物プランクトンは陸上の植物とおなじように太陽の光を使う光合成で二酸化炭素と水から栄
養分を作る栄養分を体に蓄えたこの植物プランクトンを動物プランクトンが食べるその動物プランク
トンを小さな魚が食べるそれを大きな魚が食べる最初に植物プランクトンが作った栄養はこの食物連
鎖で生き物全体を支えることになる
ここで大切なのは連鎖だ連鎖のどこかが欠けると本来の生態系は損なわれてしまう近年の急速な地球
温暖化で海水は温まっておりさまざまな形でこの連鎖がほころびる可能性が指摘されている英スウォ
ンジー大学のカムタン教授東京大学の高橋一生たかはし かずたか教授らの研究グループは日本沿岸
の動物プランクトンは海水温が21度を超えると急激に死にやすくなることを確かめた動物プランク
トンは海の生き物たちの食を底辺に近い部分で支えているためその変化は生き物全体の構成に大きく
影響するかもしれないという
103アナーキーさん
垢版 |
2019/06/22(土) 14:26:59.15
研究グループは動物プランクトンを研究のため染色する際水中で生きていたものは赤く死んでいたも
のは染まらずに白いままにできる手法を開発した2013年の5〜7月に瀬戸内海浜名湖静岡県相模
湾神奈川県東京湾大槌湾岩手県で動物プランクトンを採取して調べたところこれらの地域に多いカイ
アシ類と呼ばれる動物プランクトンでは平均して4.4〜18.1%最大で53%が水中ですでに死
んでいたまたこのうち世界の海域でふつうに見つかるアカルチア属は水面から底近くまでの平均水温
が21度を超えると死骸の割合が水温の上昇とともに急激に増えることもわかった
高橋さんによると海水温の上昇にともなって動物プランクトンの分布がどう変化するかを追う研究つ
まり日本近海だとたとえば南のプランクトンが勢力を北に広げるというような生息域の変化を調べる
タイプの研究はこれまでにもあったが今回のように動物プランクトンの生存率と水温の関係を調べた
研究は例が少ないという
また今回の研究で動物プランクトンの死骸の半分ほどは海底に沈んで堆積することもわかった死骸が
堆積せずにバクテリアによって分解されればふたたび栄養の元として役立つことになるが堆積してし
まうとこの栄養分の循環から外れてしまう海中の食物連鎖は植物プランクトンの作り出した栄養分が
かなり効率よく動物プランクトン小さな魚大きな魚へと受け継がれていくと考えられているだが海水
温の上昇でこの連鎖が動物プランクトンの部分で貧弱になり植物プランクトンの栄養が十分に魚に届
かなくなる可能性もあると高橋さんは指摘する
104アナーキーさん
垢版 |
2019/06/22(土) 14:27:02.26
める茂木さんらのような研究が両輪となって気象学は進歩していく
図 雨雲の過飽和度を観測する手法の模式図上昇気流の中の黒色炭素初期トレーサーと落ちてきた雨
粒に含まれている黒色炭素除去されたトレーサーのサイズの違いを調べそれらを比較することで雨雲
の水蒸気の含みすぎ具合過飽和度を推定する
海の生き物たちが暮らしていくための栄養は植物プランクトンが作り出しているプランクトンとは自
分で泳がずおもに流れに身を任せて移動する水中の生き物のことだ海面近くを漂うさまざまな種類の
小さな植物プランクトンは陸上の植物とおなじように太陽の光を使う光合成で二酸化炭素と水から栄
養分を作る栄養分を体に蓄えたこの植物プランクトンを動物プランクトンが食べるその動物プランク
トンを小さな魚が食べるそれを大きな魚が食べる最初に植物プランクトンが作った栄養はこの食物連
鎖で生き物全体を支えることになる
ここで大切なのは連鎖だ連鎖のどこかが欠けると本来の生態系は損なわれてしまう近年の急速な地球
温暖化で海水は温まっておりさまざまな形でこの連鎖がほころびる可能性が指摘されている英スウォ
ンジー大学のカムタン教授東京大学の高橋一生たかはし かずたか教授らの研究グループは日本沿岸
の動物プランクトンは海水温が21度を超えると急激に死にやすくなることを確かめた動物プランク
トンは海の生き物たちの食を底辺に近い部分で支えているためその変化は生き物全体の構成に大きく
影響するかもしれないという
105 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:27:07.10
研究グループは動物プランクトンを研究のため染色する際水中で生きていたものは赤く死んでいたも
のは染まらずに白いままにできる手法を開発した2013年の5〜7月に瀬戸内海浜名湖静岡県相模
湾神奈川県東京湾大槌湾岩手県で動物プランクトンを採取して調べたところこれらの地域に多いカイ
アシ類と呼ばれる動物プランクトンでは平均して4.4〜18.1%最大で53%が水中ですでに死
んでいたまたこのうち世界の海域でふつうに見つかるアカルチア属は水面から底近くまでの平均水温
が21度を超えると死骸の割合が水温の上昇とともに急激に増えることもわかった
高橋さんによると海水温の上昇にともなって動物プランクトンの分布がどう変化するかを追う研究つ
まり日本近海だとたとえば南のプランクトンが勢力を北に広げるというような生息域の変化を調べる
タイプの研究はこれまでにもあったが今回のように動物プランクトンの生存率と水温の関係を調べた
研究は例が少ないという
また今回の研究で動物プランクトンの死骸の半分ほどは海底に沈んで堆積することもわかった死骸が
堆積せずにバクテリアによって分解されればふたたび栄養の元として役立つことになるが堆積してし
まうとこの栄養分の循環から外れてしまう海中の食物連鎖は植物プランクトンの作り出した栄養分が
かなり効率よく動物プランクトン小さな魚大きな魚へと受け継がれていくと考えられているだが海水
温の上昇でこの連鎖が動物プランクトンの部分で貧弱になり植物プランクトンの栄養が十分に魚に届
かなくなる可能性もあると高橋さんは指摘する
106アナーキーさん
垢版 |
2019/06/22(土) 14:27:08.40
研究グループは動物プランクトンを研究のため染色する際水中で生きていたものは赤く死んでいたも
のは染まらずに白いままにできる手法を開発した2013年の5〜7月に瀬戸内海浜名湖静岡県相模
湾神奈川県東京湾大槌湾岩手県で動物プランクトンを採取して調べたところこれらの地域に多いカイ
アシ類と呼ばれる動物プランクトンでは平均して4.4〜18.1%最大で53%が水中ですでに死
んでいたまたこのうち世界の海域でふつうに見つかるアカルチア属は水面から底近くまでの平均水温
が21度を超えると死骸の割合が水温の上昇とともに急激に増えることもわかった
高橋さんによると海水温の上昇にともなって動物プランクトンの分布がどう変化するかを追う研究つ
まり日本近海だとたとえば南のプランクトンが勢力を北に広げるというような生息域の変化を調べる
タイプの研究はこれまでにもあったが今回のように動物プランクトンの生存率と水温の関係を調べた
研究は例が少ないという
また今回の研究で動物プランクトンの死骸の半分ほどは海底に沈んで堆積することもわかった死骸が
堆積せずにバクテリアによって分解されればふたたび栄養の元として役立つことになるが堆積してし
まうとこの栄養分の循環から外れてしまう海中の食物連鎖は植物プランクトンの作り出した栄養分が
かなり効率よく動物プランクトン小さな魚大きな魚へと受け継がれていくと考えられているだが海水
温の上昇でこの連鎖が動物プランクトンの部分で貧弱になり植物プランクトンの栄養が十分に魚に届
かなくなる可能性もあると高橋さんは指摘する
107アナーキーさん
垢版 |
2019/06/22(土) 14:27:09.62
研究グループは動物プランクトンを研究のため染色する際水中で生きていたものは赤く死んでいたも
のは染まらずに白いままにできる手法を開発した2013年の5〜7月に瀬戸内海浜名湖静岡県相模
湾神奈川県東京湾大槌湾岩手県で動物プランクトンを採取して調べたところこれらの地域に多いカイ
アシ類と呼ばれる動物プランクトンでは平均して4.4〜18.1%最大で53%が水中ですでに死
んでいたまたこのうち世界の海域でふつうに見つかるアカルチア属は水面から底近くまでの平均水温
が21度を超えると死骸の割合が水温の上昇とともに急激に増えることもわかった
高橋さんによると海水温の上昇にともなって動物プランクトンの分布がどう変化するかを追う研究つ
まり日本近海だとたとえば南のプランクトンが勢力を北に広げるというような生息域の変化を調べる
タイプの研究はこれまでにもあったが今回のように動物プランクトンの生存率と水温の関係を調べた
研究は例が少ないという
また今回の研究で動物プランクトンの死骸の半分ほどは海底に沈んで堆積することもわかった死骸が
堆積せずにバクテリアによって分解されればふたたび栄養の元として役立つことになるが堆積してし
まうとこの栄養分の循環から外れてしまう海中の食物連鎖は植物プランクトンの作り出した栄養分が
かなり効率よく動物プランクトン小さな魚大きな魚へと受け継がれていくと考えられているだが海水
温の上昇でこの連鎖が動物プランクトンの部分で貧弱になり植物プランクトンの栄養が十分に魚に届
かなくなる可能性もあると高橋さんは指摘する
108アナーキーさん
垢版 |
2019/06/22(土) 14:27:11.16
研究グループは動物プランクトンを研究のため染色する際水中で生きていたものは赤く死んでいたも
のは染まらずに白いままにできる手法を開発した2013年の5〜7月に瀬戸内海浜名湖静岡県相模
湾神奈川県東京湾大槌湾岩手県で動物プランクトンを採取して調べたところこれらの地域に多いカイ
アシ類と呼ばれる動物プランクトンでは平均して4.4〜18.1%最大で53%が水中ですでに死
んでいたまたこのうち世界の海域でふつうに見つかるアカルチア属は水面から底近くまでの平均水温
が21度を超えると死骸の割合が水温の上昇とともに急激に増えることもわかった
高橋さんによると海水温の上昇にともなって動物プランクトンの分布がどう変化するかを追う研究つ
まり日本近海だとたとえば南のプランクトンが勢力を北に広げるというような生息域の変化を調べる
タイプの研究はこれまでにもあったが今回のように動物プランクトンの生存率と水温の関係を調べた
研究は例が少ないという
また今回の研究で動物プランクトンの死骸の半分ほどは海底に沈んで堆積することもわかった死骸が
堆積せずにバクテリアによって分解されればふたたび栄養の元として役立つことになるが堆積してし
まうとこの栄養分の循環から外れてしまう海中の食物連鎖は植物プランクトンの作り出した栄養分が
かなり効率よく動物プランクトン小さな魚大きな魚へと受け継がれていくと考えられているだが海水
温の上昇でこの連鎖が動物プランクトンの部分で貧弱になり植物プランクトンの栄養が十分に魚に届
かなくなる可能性もあると高橋さんは指摘する
109アナーキーさん
垢版 |
2019/06/22(土) 14:27:13.72
研究グループは動物プランクトンを研究のため染色する際水中で生きていたものは赤く死んでいたも
のは染まらずに白いままにできる手法を開発した2013年の5〜7月に瀬戸内海浜名湖静岡県相模
湾神奈川県東京湾大槌湾岩手県で動物プランクトンを採取して調べたところこれらの地域に多いカイ
アシ類と呼ばれる動物プランクトンでは平均して4.4〜18.1%最大で53%が水中ですでに死
んでいたまたこのうち世界の海域でふつうに見つかるアカルチア属は水面から底近くまでの平均水温
が21度を超えると死骸の割合が水温の上昇とともに急激に増えることもわかった
高橋さんによると海水温の上昇にともなって動物プランクトンの分布がどう変化するかを追う研究つ
まり日本近海だとたとえば南のプランクトンが勢力を北に広げるというような生息域の変化を調べる
タイプの研究はこれまでにもあったが今回のように動物プランクトンの生存率と水温の関係を調べた
研究は例が少ないという
また今回の研究で動物プランクトンの死骸の半分ほどは海底に沈んで堆積することもわかった死骸が
堆積せずにバクテリアによって分解されればふたたび栄養の元として役立つことになるが堆積してし
まうとこの栄養分の循環から外れてしまう海中の食物連鎖は植物プランクトンの作り出した栄養分が
かなり効率よく動物プランクトン小さな魚大きな魚へと受け継がれていくと考えられているだが海水
温の上昇でこの連鎖が動物プランクトンの部分で貧弱になり植物プランクトンの栄養が十分に魚に届
かなくなる可能性もあると高橋さんは指摘する
110 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:27:18.47
日本近海は海水温の上昇ペースが世界の平均より速い大槌湾のあたりでも夏の平均水温は21度くら
いになっているという生き物の連鎖は複雑でそれぞれに適応能力もあるので地球温暖化で海水温が上
昇して21度を超えたとき何が起こるかを正確に予測するのは難しいだがきっと何かが起こることを
この研究は示しているもうすぐそこの話だ
図 ニュートラルレッドという試薬で染色した動物プランクトンカイアシ類生きているプランクトン
は赤く染まるが水中ですでに死んでいた動物プランクトンは染まらないこれを目で見て生死を判別す

四角柱がねじれたようにつながるペンローズの四角形永遠に登り続けるように見える無限階段──不
可能図形と呼ばれる現実にはありえないと思われていた図形を数学の力で現実に作り出した研究者が
いる
明治大学先端数理科学インスティテュート所長の杉原厚吉特任教授は2009年に同大に着任して以
来無限階段のようなだまし絵の立体化の他鏡に写すと姿が変わる変身立体180度回転させても逆方
向を向かない右を向きたがる矢印など現実にはありえないような不可能立体を生み出し話題を呼んで
きた
杉原教授は3月に明治大を退官するに当たり12日に最終講座を行った10年間の錯視研究でタネ明
かしをしても脳は錯覚を修正できないことと両目で見ても錯覚は起こる場合があることに衝撃を受け
111アナーキーさん
垢版 |
2019/06/22(土) 14:27:19.56
日本近海は海水温の上昇ペースが世界の平均より速い大槌湾のあたりでも夏の平均水温は21度くら
いになっているという生き物の連鎖は複雑でそれぞれに適応能力もあるので地球温暖化で海水温が上
昇して21度を超えたとき何が起こるかを正確に予測するのは難しいだがきっと何かが起こることを
この研究は示しているもうすぐそこの話だ
図 ニュートラルレッドという試薬で染色した動物プランクトンカイアシ類生きているプランクトン
は赤く染まるが水中ですでに死んでいた動物プランクトンは染まらないこれを目で見て生死を判別す

四角柱がねじれたようにつながるペンローズの四角形永遠に登り続けるように見える無限階段──不
可能図形と呼ばれる現実にはありえないと思われていた図形を数学の力で現実に作り出した研究者が
いる
明治大学先端数理科学インスティテュート所長の杉原厚吉特任教授は2009年に同大に着任して以
来無限階段のようなだまし絵の立体化の他鏡に写すと姿が変わる変身立体180度回転させても逆方
向を向かない右を向きたがる矢印など現実にはありえないような不可能立体を生み出し話題を呼んで
きた
杉原教授は3月に明治大を退官するに当たり12日に最終講座を行った10年間の錯視研究でタネ明
かしをしても脳は錯覚を修正できないことと両目で見ても錯覚は起こる場合があることに衝撃を受け
112アナーキーさん
垢版 |
2019/06/22(土) 14:27:21.14
日本近海は海水温の上昇ペースが世界の平均より速い大槌湾のあたりでも夏の平均水温は21度くら
いになっているという生き物の連鎖は複雑でそれぞれに適応能力もあるので地球温暖化で海水温が上
昇して21度を超えたとき何が起こるかを正確に予測するのは難しいだがきっと何かが起こることを
この研究は示しているもうすぐそこの話だ
図 ニュートラルレッドという試薬で染色した動物プランクトンカイアシ類生きているプランクトン
は赤く染まるが水中ですでに死んでいた動物プランクトンは染まらないこれを目で見て生死を判別す

四角柱がねじれたようにつながるペンローズの四角形永遠に登り続けるように見える無限階段──不
可能図形と呼ばれる現実にはありえないと思われていた図形を数学の力で現実に作り出した研究者が
いる
明治大学先端数理科学インスティテュート所長の杉原厚吉特任教授は2009年に同大に着任して以
来無限階段のようなだまし絵の立体化の他鏡に写すと姿が変わる変身立体180度回転させても逆方
向を向かない右を向きたがる矢印など現実にはありえないような不可能立体を生み出し話題を呼んで
きた
杉原教授は3月に明治大を退官するに当たり12日に最終講座を行った10年間の錯視研究でタネ明
かしをしても脳は錯覚を修正できないことと両目で見ても錯覚は起こる場合があることに衝撃を受け
113アナーキーさん
垢版 |
2019/06/22(土) 14:27:27.34
日本近海は海水温の上昇ペースが世界の平均より速い大槌湾のあたりでも夏の平均水温は21度くら
いになっているという生き物の連鎖は複雑でそれぞれに適応能力もあるので地球温暖化で海水温が上
昇して21度を超えたとき何が起こるかを正確に予測するのは難しいだがきっと何かが起こることを
この研究は示しているもうすぐそこの話だ
図 ニュートラルレッドという試薬で染色した動物プランクトンカイアシ類生きているプランクトン
は赤く染まるが水中ですでに死んでいた動物プランクトンは染まらないこれを目で見て生死を判別す

四角柱がねじれたようにつながるペンローズの四角形永遠に登り続けるように見える無限階段──不
可能図形と呼ばれる現実にはありえないと思われていた図形を数学の力で現実に作り出した研究者が
いる
明治大学先端数理科学インスティテュート所長の杉原厚吉特任教授は2009年に同大に着任して以
来無限階段のようなだまし絵の立体化の他鏡に写すと姿が変わる変身立体180度回転させても逆方
向を向かない右を向きたがる矢印など現実にはありえないような不可能立体を生み出し話題を呼んで
きた
杉原教授は3月に明治大を退官するに当たり12日に最終講座を行った10年間の錯視研究でタネ明
かしをしても脳は錯覚を修正できないことと両目で見ても錯覚は起こる場合があることに衝撃を受け
114アナーキーさん
垢版 |
2019/06/22(土) 14:27:28.80
日本近海は海水温の上昇ペースが世界の平均より速い大槌湾のあたりでも夏の平均水温は21度くら
いになっているという生き物の連鎖は複雑でそれぞれに適応能力もあるので地球温暖化で海水温が上
昇して21度を超えたとき何が起こるかを正確に予測するのは難しいだがきっと何かが起こることを
この研究は示しているもうすぐそこの話だ
図 ニュートラルレッドという試薬で染色した動物プランクトンカイアシ類生きているプランクトン
は赤く染まるが水中ですでに死んでいた動物プランクトンは染まらないこれを目で見て生死を判別す

四角柱がねじれたようにつながるペンローズの四角形永遠に登り続けるように見える無限階段──不
可能図形と呼ばれる現実にはありえないと思われていた図形を数学の力で現実に作り出した研究者が
いる
明治大学先端数理科学インスティテュート所長の杉原厚吉特任教授は2009年に同大に着任して以
来無限階段のようなだまし絵の立体化の他鏡に写すと姿が変わる変身立体180度回転させても逆方
向を向かない右を向きたがる矢印など現実にはありえないような不可能立体を生み出し話題を呼んで
きた
杉原教授は3月に明治大を退官するに当たり12日に最終講座を行った10年間の錯視研究でタネ明
かしをしても脳は錯覚を修正できないことと両目で見ても錯覚は起こる場合があることに衝撃を受け
115 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:27:30.38
日本近海は海水温の上昇ペースが世界の平均より速い大槌湾のあたりでも夏の平均水温は21度くら
いになっているという生き物の連鎖は複雑でそれぞれに適応能力もあるので地球温暖化で海水温が上
昇して21度を超えたとき何が起こるかを正確に予測するのは難しいだがきっと何かが起こることを
この研究は示しているもうすぐそこの話だ
図 ニュートラルレッドという試薬で染色した動物プランクトンカイアシ類生きているプランクトン
は赤く染まるが水中ですでに死んでいた動物プランクトンは染まらないこれを目で見て生死を判別す

四角柱がねじれたようにつながるペンローズの四角形永遠に登り続けるように見える無限階段──不
可能図形と呼ばれる現実にはありえないと思われていた図形を数学の力で現実に作り出した研究者が
いる
明治大学先端数理科学インスティテュート所長の杉原厚吉特任教授は2009年に同大に着任して以
来無限階段のようなだまし絵の立体化の他鏡に写すと姿が変わる変身立体180度回転させても逆方
向を向かない右を向きたがる矢印など現実にはありえないような不可能立体を生み出し話題を呼んで
きた
杉原教授は3月に明治大を退官するに当たり12日に最終講座を行った10年間の錯視研究でタネ明
かしをしても脳は錯覚を修正できないことと両目で見ても錯覚は起こる場合があることに衝撃を受け
116アナーキーさん
垢版 |
2019/06/22(土) 14:27:32.69
日本近海は海水温の上昇ペースが世界の平均より速い大槌湾のあたりでも夏の平均水温は21度くら
いになっているという生き物の連鎖は複雑でそれぞれに適応能力もあるので地球温暖化で海水温が上
昇して21度を超えたとき何が起こるかを正確に予測するのは難しいだがきっと何かが起こることを
この研究は示しているもうすぐそこの話だ
図 ニュートラルレッドという試薬で染色した動物プランクトンカイアシ類生きているプランクトン
は赤く染まるが水中ですでに死んでいた動物プランクトンは染まらないこれを目で見て生死を判別す

四角柱がねじれたようにつながるペンローズの四角形永遠に登り続けるように見える無限階段──不
可能図形と呼ばれる現実にはありえないと思われていた図形を数学の力で現実に作り出した研究者が
いる
明治大学先端数理科学インスティテュート所長の杉原厚吉特任教授は2009年に同大に着任して以
来無限階段のようなだまし絵の立体化の他鏡に写すと姿が変わる変身立体180度回転させても逆方
向を向かない右を向きたがる矢印など現実にはありえないような不可能立体を生み出し話題を呼んで
きた
杉原教授は3月に明治大を退官するに当たり12日に最終講座を行った10年間の錯視研究でタネ明
かしをしても脳は錯覚を修正できないことと両目で見ても錯覚は起こる場合があることに衝撃を受け
117アナーキーさん
垢版 |
2019/06/22(土) 14:27:43.91
その上で1つの疑問が浮かんだと話す
非直角を直角に見せる新たな立体トリックを考案
ペンローズの四角形に見える立体を作ったのは杉原教授が初めてではない従来も実際にはつながって
いない四角柱をつながっているように見せかける不連続のトリックや四角柱を曲げてつながった立体
を作る曲面のトリックといった立体化があったが杉原教授は直角に見えるところに直角以外の角度を
使うという方法を取った
非直角のアプローチでは四角柱は曲がらず不連続にもならない
※従来の曲面のトリックによるペンローズの四角形と杉原教授考案の非直角のトリックによるペンロ
ーズの四角形
教授は不可能立体を作るために数学的な方程式を解いているという絵には奥行き情報がないから絵と
同じように見える立体はたくさんある同無数にあり得る立体の中から人の脳は無意識のうちにこれだ
と決めつけ現実には作れないと考えるが方程式に解があればその立体は作れるというのが杉原教授の
理論だ
そして脳がこれだと決めつけがちなのが直角の多い立体
実際には直角ではないのにある視点から見たときにあたかも直角に見えてしまうと脳は直角だと強く
思い込んでしまいその結果として目の前にありえない立体があるように錯覚してしまうのだという
118アナーキーさん
垢版 |
2019/06/22(土) 14:27:46.48
その上で1つの疑問が浮かんだと話す
非直角を直角に見せる新たな立体トリックを考案
ペンローズの四角形に見える立体を作ったのは杉原教授が初めてではない従来も実際にはつながって
いない四角柱をつながっているように見せかける不連続のトリックや四角柱を曲げてつながった立体
を作る曲面のトリックといった立体化があったが杉原教授は直角に見えるところに直角以外の角度を
使うという方法を取った
非直角のアプローチでは四角柱は曲がらず不連続にもならない
※従来の曲面のトリックによるペンローズの四角形と杉原教授考案の非直角のトリックによるペンロ
ーズの四角形
教授は不可能立体を作るために数学的な方程式を解いているという絵には奥行き情報がないから絵と
同じように見える立体はたくさんある同無数にあり得る立体の中から人の脳は無意識のうちにこれだ
と決めつけ現実には作れないと考えるが方程式に解があればその立体は作れるというのが杉原教授の
理論だ
そして脳がこれだと決めつけがちなのが直角の多い立体
実際には直角ではないのにある視点から見たときにあたかも直角に見えてしまうと脳は直角だと強く
思い込んでしまいその結果として目の前にありえない立体があるように錯覚してしまうのだという
119アナーキーさん
垢版 |
2019/06/22(土) 14:27:47.58
その上で1つの疑問が浮かんだと話す
非直角を直角に見せる新たな立体トリックを考案
ペンローズの四角形に見える立体を作ったのは杉原教授が初めてではない従来も実際にはつながって
いない四角柱をつながっているように見せかける不連続のトリックや四角柱を曲げてつながった立体
を作る曲面のトリックといった立体化があったが杉原教授は直角に見えるところに直角以外の角度を
使うという方法を取った
非直角のアプローチでは四角柱は曲がらず不連続にもならない
※従来の曲面のトリックによるペンローズの四角形と杉原教授考案の非直角のトリックによるペンロ
ーズの四角形
教授は不可能立体を作るために数学的な方程式を解いているという絵には奥行き情報がないから絵と
同じように見える立体はたくさんある同無数にあり得る立体の中から人の脳は無意識のうちにこれだ
と決めつけ現実には作れないと考えるが方程式に解があればその立体は作れるというのが杉原教授の
理論だ
そして脳がこれだと決めつけがちなのが直角の多い立体
実際には直角ではないのにある視点から見たときにあたかも直角に見えてしまうと脳は直角だと強く
思い込んでしまいその結果として目の前にありえない立体があるように錯覚してしまうのだという
120 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:27:53.92
杉原教授が非直角のトリックを発表したのは明大着任前の電子技術総合研究所現産業総合研究所時代
の1980年当時から不可能立体の魅力にとりつかれてはいたがタネ明かしをすればそれで終わりな
ので残念とも考えていたと話す
しかし不可能立体を長く研究してきた中でタネ明かしをしても脳は錯覚を修正できないということに
気付き衝撃を受けたという
例えば長方形の窓枠が並行に並ぶところを真っすぐな棒が格子をジグザグに交差するように見える不
可能立体がある
※2つの長方形の窓枠に赤い棒がジグザグに交差しているように見える
タネ明かしをすると実は窓枠は長方形ではなく平行四辺形で側面から見ればその様子がよく分かるだ
が元の角度に戻って見てみるとやはり長方形の窓枠とありえない交差をしている棒があるようにしか
見えない
※実は平行四辺形の窓枠が前にせり出す形をしていた左 実際の形を知った上で正面から見直すと錯
覚が抜けているかというと……?右
なぜすでに実際の形を見たにもかかわらず脳は錯覚を続けるのか杉原教授は画像から奥行きを読み取
る脳の働きは知識を無視した自動処理で行われるからだと解説する
実は錯視の研究は幾何学ではなく脳科学だった──衝撃とともに杉原教授は自身の研究領域が計算科
121アナーキーさん
垢版 |
2019/06/22(土) 14:27:55.14
杉原教授が非直角のトリックを発表したのは明大着任前の電子技術総合研究所現産業総合研究所時代
の1980年当時から不可能立体の魅力にとりつかれてはいたがタネ明かしをすればそれで終わりな
ので残念とも考えていたと話す
しかし不可能立体を長く研究してきた中でタネ明かしをしても脳は錯覚を修正できないということに
気付き衝撃を受けたという
例えば長方形の窓枠が並行に並ぶところを真っすぐな棒が格子をジグザグに交差するように見える不
可能立体がある
※2つの長方形の窓枠に赤い棒がジグザグに交差しているように見える
タネ明かしをすると実は窓枠は長方形ではなく平行四辺形で側面から見ればその様子がよく分かるだ
が元の角度に戻って見てみるとやはり長方形の窓枠とありえない交差をしている棒があるようにしか
見えない
※実は平行四辺形の窓枠が前にせり出す形をしていた左 実際の形を知った上で正面から見直すと錯
覚が抜けているかというと……?右
なぜすでに実際の形を見たにもかかわらず脳は錯覚を続けるのか杉原教授は画像から奥行きを読み取
る脳の働きは知識を無視した自動処理で行われるからだと解説する
実は錯視の研究は幾何学ではなく脳科学だった──衝撃とともに杉原教授は自身の研究領域が計算科
122アナーキーさん
垢版 |
2019/06/22(土) 14:27:56.89
杉原教授が非直角のトリックを発表したのは明大着任前の電子技術総合研究所現産業総合研究所時代
の1980年当時から不可能立体の魅力にとりつかれてはいたがタネ明かしをすればそれで終わりな
ので残念とも考えていたと話す
しかし不可能立体を長く研究してきた中でタネ明かしをしても脳は錯覚を修正できないということに
気付き衝撃を受けたという
例えば長方形の窓枠が並行に並ぶところを真っすぐな棒が格子をジグザグに交差するように見える不
可能立体がある
※2つの長方形の窓枠に赤い棒がジグザグに交差しているように見える
タネ明かしをすると実は窓枠は長方形ではなく平行四辺形で側面から見ればその様子がよく分かるだ
が元の角度に戻って見てみるとやはり長方形の窓枠とありえない交差をしている棒があるようにしか
見えない
※実は平行四辺形の窓枠が前にせり出す形をしていた左 実際の形を知った上で正面から見直すと錯
覚が抜けているかというと……?右
なぜすでに実際の形を見たにもかかわらず脳は錯覚を続けるのか杉原教授は画像から奥行きを読み取
る脳の働きは知識を無視した自動処理で行われるからだと解説する
実は錯視の研究は幾何学ではなく脳科学だった──衝撃とともに杉原教授は自身の研究領域が計算科
123アナーキーさん
垢版 |
2019/06/22(土) 14:27:58.08
杉原教授が非直角のトリックを発表したのは明大着任前の電子技術総合研究所現産業総合研究所時代
の1980年当時から不可能立体の魅力にとりつかれてはいたがタネ明かしをすればそれで終わりな
ので残念とも考えていたと話す
しかし不可能立体を長く研究してきた中でタネ明かしをしても脳は錯覚を修正できないということに
気付き衝撃を受けたという
例えば長方形の窓枠が並行に並ぶところを真っすぐな棒が格子をジグザグに交差するように見える不
可能立体がある
※2つの長方形の窓枠に赤い棒がジグザグに交差しているように見える
タネ明かしをすると実は窓枠は長方形ではなく平行四辺形で側面から見ればその様子がよく分かるだ
が元の角度に戻って見てみるとやはり長方形の窓枠とありえない交差をしている棒があるようにしか
見えない
※実は平行四辺形の窓枠が前にせり出す形をしていた左 実際の形を知った上で正面から見直すと錯
覚が抜けているかというと……?右
なぜすでに実際の形を見たにもかかわらず脳は錯覚を続けるのか杉原教授は画像から奥行きを読み取
る脳の働きは知識を無視した自動処理で行われるからだと解説する
実は錯視の研究は幾何学ではなく脳科学だった──衝撃とともに杉原教授は自身の研究領域が計算科
124アナーキーさん
垢版 |
2019/06/22(土) 14:27:58.81
その上で1つの疑問が浮かんだと話す
非直角を直角に見せる新たな立体トリックを考案
ペンローズの四角形に見える立体を作ったのは杉原教授が初めてではない従来も実際にはつながって
いない四角柱をつながっているように見せかける不連続のトリックや四角柱を曲げてつながった立体
を作る曲面のトリックといった立体化があったが杉原教授は直角に見えるところに直角以外の角度を
使うという方法を取った
非直角のアプローチでは四角柱は曲がらず不連続にもならない
※従来の曲面のトリックによるペンローズの四角形と杉原教授考案の非直角のトリックによるペンロ
ーズの四角形
教授は不可能立体を作るために数学的な方程式を解いているという絵には奥行き情報がないから絵と
同じように見える立体はたくさんある同無数にあり得る立体の中から人の脳は無意識のうちにこれだ
と決めつけ現実には作れないと考えるが方程式に解があればその立体は作れるというのが杉原教授の
理論だ
そして脳がこれだと決めつけがちなのが直角の多い立体
実際には直角ではないのにある視点から見たときにあたかも直角に見えてしまうと脳は直角だと強く
思い込んでしまいその結果として目の前にありえない立体があるように錯覚してしまうのだという
2019/06/22(土) 14:28:02.81
      ':::;:::::::::::.:::::::::::::::'::::::::j:7     ヾト:::、'i:::| 1:i:::::::}:::!:|
     {:::i:::::::::: :::::::::/:::j:::::::::i:j:    _,,,,.。xァ\1:},,,_|:j!::j::l:::::j!
     |:::!::::::::: ::::::::;゙:::::l:::::::::リ  ‐'^´ ̄     ' ̄ ^レj:ノ::::リ
     1:{:::::::i:::: :::::{::: ::|:::::::::| _,r=rャzsx、    ,。xrzイ:::::::{
      N:::::::|::!:::::::|::: ::|:::::::::{^ヽ. 込゚リ'     ^抄 'ス:::::::|
        V:::j!:i::::::::l:::::::l;::::::::1   `''’        '・{i:::::::::1
.        マ|:::i::: :::1::::::1:::::::::,           ′  }|:::::::!:|
         jヘヾ:::::::V:::::'、:::::::1           ,:':!::::::j:j!
         `弋::;ヘ::;::ヘ::::、::'、   (`'''' ァ   /;7:::::;':7
            j^''≒;_::;k::ヽ::ト.、_   ̄ ,.イ:/::/:::::/j/
                   `'ミ\:トミ:、`¨Tィ7 i'ン:::イ::/./
126アナーキーさん
垢版 |
2019/06/22(土) 14:28:04.96
杉原教授が非直角のトリックを発表したのは明大着任前の電子技術総合研究所現産業総合研究所時代
の1980年当時から不可能立体の魅力にとりつかれてはいたがタネ明かしをすればそれで終わりな
ので残念とも考えていたと話す
しかし不可能立体を長く研究してきた中でタネ明かしをしても脳は錯覚を修正できないということに
気付き衝撃を受けたという
例えば長方形の窓枠が並行に並ぶところを真っすぐな棒が格子をジグザグに交差するように見える不
可能立体がある
※2つの長方形の窓枠に赤い棒がジグザグに交差しているように見える
タネ明かしをすると実は窓枠は長方形ではなく平行四辺形で側面から見ればその様子がよく分かるだ
が元の角度に戻って見てみるとやはり長方形の窓枠とありえない交差をしている棒があるようにしか
見えない
※実は平行四辺形の窓枠が前にせり出す形をしていた左 実際の形を知った上で正面から見直すと錯
覚が抜けているかというと……?右
なぜすでに実際の形を見たにもかかわらず脳は錯覚を続けるのか杉原教授は画像から奥行きを読み取
る脳の働きは知識を無視した自動処理で行われるからだと解説する
実は錯視の研究は幾何学ではなく脳科学だった──衝撃とともに杉原教授は自身の研究領域が計算科
127アナーキーさん
垢版 |
2019/06/22(土) 14:28:09.24
杉原教授が非直角のトリックを発表したのは明大着任前の電子技術総合研究所現産業総合研究所時代
の1980年当時から不可能立体の魅力にとりつかれてはいたがタネ明かしをすればそれで終わりな
ので残念とも考えていたと話す
しかし不可能立体を長く研究してきた中でタネ明かしをしても脳は錯覚を修正できないということに
気付き衝撃を受けたという
例えば長方形の窓枠が並行に並ぶところを真っすぐな棒が格子をジグザグに交差するように見える不
可能立体がある
※2つの長方形の窓枠に赤い棒がジグザグに交差しているように見える
タネ明かしをすると実は窓枠は長方形ではなく平行四辺形で側面から見ればその様子がよく分かるだ
が元の角度に戻って見てみるとやはり長方形の窓枠とありえない交差をしている棒があるようにしか
見えない
※実は平行四辺形の窓枠が前にせり出す形をしていた左 実際の形を知った上で正面から見直すと錯
覚が抜けているかというと……?右
なぜすでに実際の形を見たにもかかわらず脳は錯覚を続けるのか杉原教授は画像から奥行きを読み取
る脳の働きは知識を無視した自動処理で行われるからだと解説する
実は錯視の研究は幾何学ではなく脳科学だった──衝撃とともに杉原教授は自身の研究領域が計算科
128アナーキーさん
垢版 |
2019/06/22(土) 14:28:10.57
学で完結するものではなく脳科学も必要であることに気付いたと振り返った
両目で見てもだませる錯視
多くの立体錯視にはある欠点があるそれは両目で見るとタネが分かるということだこれは人が両目の
視覚情報から見たものの奥行きを計っているからだ
カメラで撮影した立体をスクリーン越しに見てもらう分には奥行きがバレないため問題ないが実物を
見てもらう際には片目を閉じてもらわないとうまく錯視を実感してもらえないという課題があった
これを杉原教授は2つのアプローチで解決した
人類として初めて火星に降り立つのは男性ではなく女性になる可能性が大きい――米航空宇宙局NA
SAのジムブライデンスタイン局長がこのほどそんな見通しを明らかにした
ブライデンスタイン局長は科学技術をテーマにしたラジオ番組サイエンスフライデーにゲストとして
出演し火星に人類として初めて降り立つのは女性になりそうだと語った
同局長によればNASAが計画している火星への有人飛行では女性が最有力候補になっているという
ただ特定の人物の名は明かさなかった
さらに月を目指す次の有人飛行についても女性が参加するかどうかをツイッターのユーザーから尋ね
られてもちろんと答え次に月へ行くのも女性になるだろうと話している
今月末にはNASAのアンマクレーン宇宙飛行士とクリスティーナコック宇宙飛行士が初めて女性だ
129アナーキーさん
垢版 |
2019/06/22(土) 14:28:12.20
学で完結するものではなく脳科学も必要であることに気付いたと振り返った
両目で見てもだませる錯視
多くの立体錯視にはある欠点があるそれは両目で見るとタネが分かるということだこれは人が両目の
視覚情報から見たものの奥行きを計っているからだ
カメラで撮影した立体をスクリーン越しに見てもらう分には奥行きがバレないため問題ないが実物を
見てもらう際には片目を閉じてもらわないとうまく錯視を実感してもらえないという課題があった
これを杉原教授は2つのアプローチで解決した
人類として初めて火星に降り立つのは男性ではなく女性になる可能性が大きい――米航空宇宙局NA
SAのジムブライデンスタイン局長がこのほどそんな見通しを明らかにした
ブライデンスタイン局長は科学技術をテーマにしたラジオ番組サイエンスフライデーにゲストとして
出演し火星に人類として初めて降り立つのは女性になりそうだと語った
同局長によればNASAが計画している火星への有人飛行では女性が最有力候補になっているという
ただ特定の人物の名は明かさなかった
さらに月を目指す次の有人飛行についても女性が参加するかどうかをツイッターのユーザーから尋ね
られてもちろんと答え次に月へ行くのも女性になるだろうと話している
今月末にはNASAのアンマクレーン宇宙飛行士とクリスティーナコック宇宙飛行士が初めて女性だ
130 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:28:13.51
学で完結するものではなく脳科学も必要であることに気付いたと振り返った
両目で見てもだませる錯視
多くの立体錯視にはある欠点があるそれは両目で見るとタネが分かるということだこれは人が両目の
視覚情報から見たものの奥行きを計っているからだ
カメラで撮影した立体をスクリーン越しに見てもらう分には奥行きがバレないため問題ないが実物を
見てもらう際には片目を閉じてもらわないとうまく錯視を実感してもらえないという課題があった
これを杉原教授は2つのアプローチで解決した
人類として初めて火星に降り立つのは男性ではなく女性になる可能性が大きい――米航空宇宙局NA
SAのジムブライデンスタイン局長がこのほどそんな見通しを明らかにした
ブライデンスタイン局長は科学技術をテーマにしたラジオ番組サイエンスフライデーにゲストとして
出演し火星に人類として初めて降り立つのは女性になりそうだと語った
同局長によればNASAが計画している火星への有人飛行では女性が最有力候補になっているという
ただ特定の人物の名は明かさなかった
さらに月を目指す次の有人飛行についても女性が参加するかどうかをツイッターのユーザーから尋ね
られてもちろんと答え次に月へ行くのも女性になるだろうと話している
今月末にはNASAのアンマクレーン宇宙飛行士とクリスティーナコック宇宙飛行士が初めて女性だ
131アナーキーさん
垢版 |
2019/06/22(土) 14:28:14.60
学で完結するものではなく脳科学も必要であることに気付いたと振り返った
両目で見てもだませる錯視
多くの立体錯視にはある欠点があるそれは両目で見るとタネが分かるということだこれは人が両目の
視覚情報から見たものの奥行きを計っているからだ
カメラで撮影した立体をスクリーン越しに見てもらう分には奥行きがバレないため問題ないが実物を
見てもらう際には片目を閉じてもらわないとうまく錯視を実感してもらえないという課題があった
これを杉原教授は2つのアプローチで解決した
人類として初めて火星に降り立つのは男性ではなく女性になる可能性が大きい――米航空宇宙局NA
SAのジムブライデンスタイン局長がこのほどそんな見通しを明らかにした
ブライデンスタイン局長は科学技術をテーマにしたラジオ番組サイエンスフライデーにゲストとして
出演し火星に人類として初めて降り立つのは女性になりそうだと語った
同局長によればNASAが計画している火星への有人飛行では女性が最有力候補になっているという
ただ特定の人物の名は明かさなかった
さらに月を目指す次の有人飛行についても女性が参加するかどうかをツイッターのユーザーから尋ね
られてもちろんと答え次に月へ行くのも女性になるだろうと話している
今月末にはNASAのアンマクレーン宇宙飛行士とクリスティーナコック宇宙飛行士が初めて女性だ
2019/06/22(土) 14:28:25.54
                  ,〈_人_〉 0。 /   !    !    ヽ〈_人_〉∨
                   /  /     /   l! 0 |  | : |      ',
              /   | |    イ   ll!  │  | : |    |  |
                 〃  | l/| / レ'|_,.| 八 .,,_|\│ : |    |  |
            /:|   :|  |ー,.二., 」   Y_」,.二.,一|    |  |
              / |   :|  | 〃,_ァ、      ,_ァ、ヾ |│  |  |
.             /  :|   :l/)「 乂ツ  |l==l|  乂ツ │|  |  |
         /  .:| │.::|| 〈:ハ‐/////┘,└/////‐ ノ∧  |  人
        /  ...: | |.::::|  ー=ミ          /  ∧ V  丶
      /  /  :. ::::人      `ヽ ⊂ニ⊃ /    ハ ∨ 、  \
     /  / }    ハ ∨  ー=、   ト __ イ     ,. ‐=}  l  ∨.\ \
133アナーキーさん
垢版 |
2019/06/22(土) 14:28:29.09
けで船外活動を行う船外での活動は数時間を予定している
マクレーンコックの両氏が参加した2013年の宇宙飛行士養成課程は受講者の半数が女性だったこ
の年はNASA史上最高となる6100人が応募していたフライトディレクターの養成課程も直近の
受講者は50%を女性が占めたという
NASAで初めて6人の女性宇宙飛行士が誕生したのは1978年今では現役宇宙飛行士の34%を
女性が占める
ブライデンスタイン局長はNASAは幅広い多様な人材の活用に努めており女性が初めて月に降り立
つ日を心待ちにしているとコメントした
太陽系では太陽を中心に水星金星地球火星木星土星天王星海王星という8つの惑星が公転しています
一般的に私たちが住む地球に最も近い惑星は金星だと言われていてNASAによる金星の紹介ページ
でもour closest planetary neighbor(私たちの最も近い隣人)と
表現されていますがこの通説に対して地球に最も近い惑星は金星ではないと天文学者が反論していま

惑星の近い遠いは惑星間の平均距離によって比べられ従来の考え方では2つの惑星の平均公転半径(
太陽からの距離)の差で計算されます例えば平均公転半径が0.72AU(約1億800万kmであ
る金星と平均公転半径が1.00AU(1億5000万kim)である地球の平均距離は1.00−
134アナーキーさん
垢版 |
2019/06/22(土) 14:28:30.40
けで船外活動を行う船外での活動は数時間を予定している
マクレーンコックの両氏が参加した2013年の宇宙飛行士養成課程は受講者の半数が女性だったこ
の年はNASA史上最高となる6100人が応募していたフライトディレクターの養成課程も直近の
受講者は50%を女性が占めたという
NASAで初めて6人の女性宇宙飛行士が誕生したのは1978年今では現役宇宙飛行士の34%を
女性が占める
ブライデンスタイン局長はNASAは幅広い多様な人材の活用に努めており女性が初めて月に降り立
つ日を心待ちにしているとコメントした
太陽系では太陽を中心に水星金星地球火星木星土星天王星海王星という8つの惑星が公転しています
一般的に私たちが住む地球に最も近い惑星は金星だと言われていてNASAによる金星の紹介ページ
でもour closest planetary neighbor(私たちの最も近い隣人)と
表現されていますがこの通説に対して地球に最も近い惑星は金星ではないと天文学者が反論していま

惑星の近い遠いは惑星間の平均距離によって比べられ従来の考え方では2つの惑星の平均公転半径(
太陽からの距離)の差で計算されます例えば平均公転半径が0.72AU(約1億800万kmであ
る金星と平均公転半径が1.00AU(1億5000万kim)である地球の平均距離は1.00−
135アナーキーさん
垢版 |
2019/06/22(土) 14:28:31.93
けで船外活動を行う船外での活動は数時間を予定している
マクレーンコックの両氏が参加した2013年の宇宙飛行士養成課程は受講者の半数が女性だったこ
の年はNASA史上最高となる6100人が応募していたフライトディレクターの養成課程も直近の
受講者は50%を女性が占めたという
NASAで初めて6人の女性宇宙飛行士が誕生したのは1978年今では現役宇宙飛行士の34%を
女性が占める
ブライデンスタイン局長はNASAは幅広い多様な人材の活用に努めており女性が初めて月に降り立
つ日を心待ちにしているとコメントした
太陽系では太陽を中心に水星金星地球火星木星土星天王星海王星という8つの惑星が公転しています
一般的に私たちが住む地球に最も近い惑星は金星だと言われていてNASAによる金星の紹介ページ
でもour closest planetary neighbor(私たちの最も近い隣人)と
表現されていますがこの通説に対して地球に最も近い惑星は金星ではないと天文学者が反論していま

惑星の近い遠いは惑星間の平均距離によって比べられ従来の考え方では2つの惑星の平均公転半径(
太陽からの距離)の差で計算されます例えば平均公転半径が0.72AU(約1億800万kmであ
る金星と平均公転半径が1.00AU(1億5000万kim)である地球の平均距離は1.00−
136 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:28:34.10
けで船外活動を行う船外での活動は数時間を予定している
マクレーンコックの両氏が参加した2013年の宇宙飛行士養成課程は受講者の半数が女性だったこ
の年はNASA史上最高となる6100人が応募していたフライトディレクターの養成課程も直近の
受講者は50%を女性が占めたという
NASAで初めて6人の女性宇宙飛行士が誕生したのは1978年今では現役宇宙飛行士の34%を
女性が占める
ブライデンスタイン局長はNASAは幅広い多様な人材の活用に努めており女性が初めて月に降り立
つ日を心待ちにしているとコメントした
太陽系では太陽を中心に水星金星地球火星木星土星天王星海王星という8つの惑星が公転しています
一般的に私たちが住む地球に最も近い惑星は金星だと言われていてNASAによる金星の紹介ページ
でもour closest planetary neighbor(私たちの最も近い隣人)と
表現されていますがこの通説に対して地球に最も近い惑星は金星ではないと天文学者が反論していま

惑星の近い遠いは惑星間の平均距離によって比べられ従来の考え方では2つの惑星の平均公転半径(
太陽からの距離)の差で計算されます例えば平均公転半径が0.72AU(約1億800万kmであ
る金星と平均公転半径が1.00AU(1億5000万kim)である地球の平均距離は1.00−
137アナーキーさん
垢版 |
2019/06/22(土) 14:28:43.04
けで船外活動を行う船外での活動は数時間を予定している
マクレーンコックの両氏が参加した2013年の宇宙飛行士養成課程は受講者の半数が女性だったこ
の年はNASA史上最高となる6100人が応募していたフライトディレクターの養成課程も直近の
受講者は50%を女性が占めたという
NASAで初めて6人の女性宇宙飛行士が誕生したのは1978年今では現役宇宙飛行士の34%を
女性が占める
ブライデンスタイン局長はNASAは幅広い多様な人材の活用に努めており女性が初めて月に降り立
つ日を心待ちにしているとコメントした
太陽系では太陽を中心に水星金星地球火星木星土星天王星海王星という8つの惑星が公転しています
一般的に私たちが住む地球に最も近い惑星は金星だと言われていてNASAによる金星の紹介ページ
でもour closest planetary neighbor(私たちの最も近い隣人)と
表現されていますがこの通説に対して地球に最も近い惑星は金星ではないと天文学者が反論していま

惑星の近い遠いは惑星間の平均距離によって比べられ従来の考え方では2つの惑星の平均公転半径(
太陽からの距離)の差で計算されます例えば平均公転半径が0.72AU(約1億800万kmであ
る金星と平均公転半径が1.00AU(1億5000万kim)である地球の平均距離は1.00−
138アナーキーさん
垢版 |
2019/06/22(土) 14:28:44.22
けで船外活動を行う船外での活動は数時間を予定している
マクレーンコックの両氏が参加した2013年の宇宙飛行士養成課程は受講者の半数が女性だったこ
の年はNASA史上最高となる6100人が応募していたフライトディレクターの養成課程も直近の
受講者は50%を女性が占めたという
NASAで初めて6人の女性宇宙飛行士が誕生したのは1978年今では現役宇宙飛行士の34%を
女性が占める
ブライデンスタイン局長はNASAは幅広い多様な人材の活用に努めており女性が初めて月に降り立
つ日を心待ちにしているとコメントした
太陽系では太陽を中心に水星金星地球火星木星土星天王星海王星という8つの惑星が公転しています
一般的に私たちが住む地球に最も近い惑星は金星だと言われていてNASAによる金星の紹介ページ
でもour closest planetary neighbor(私たちの最も近い隣人)と
表現されていますがこの通説に対して地球に最も近い惑星は金星ではないと天文学者が反論していま

惑星の近い遠いは惑星間の平均距離によって比べられ従来の考え方では2つの惑星の平均公転半径(
太陽からの距離)の差で計算されます例えば平均公転半径が0.72AU(約1億800万kmであ
る金星と平均公転半径が1.00AU(1億5000万kim)である地球の平均距離は1.00−
139アナーキーさん
垢版 |
2019/06/22(土) 14:28:48.42
0.72=0.28AU(約4200万km)になります
しかし平均公転半径の差は2惑星が最接近している時の距離に近いものであり2つの惑星の間で常に
0.28AUという距離が保たれている訳ではありませんそのためどれが最も近い惑星なのかを平均
公転半径の差だけで決定する定説に対してロスアラモス国立研究所で研究助手を務めるTom St
ockman氏ら3人が異を唱えています
3人は惑星間の平均距離をより正確に捉えるためにポイントサークル法(Point Circle
MethodPCM)という新しい計算方法を提唱していますPCMでは各惑星の軌道を平均半径
をもつ同一平面上の同心円と仮定します3人は私たちの住む太陽系ではこの仮定はあながち間違って
おらず8つの惑星は2.6度±2.2度の軌道傾斜を持ち平均軌道離心率は0.06±0.06です
とコメントしています
以下の図aは2つの惑星の軌道を示したものc1は平均軌道半径=r1とする内惑星の軌道でc2は
平均軌道半径=r2とする外惑星の軌道です惑星は軌道円上を常に一定の公転速度で動いているため
惑星が軌道上のどの位置にいるのかという確率分布は一様だと考えられますそこで3人は図bに示さ
れるようなc2上の任意の点(左の円)からc1上のすべての点(右の円群)までの距離の平均を新
しい2惑星間の平均距離として数学的に定義しました
計算の結果地球と金星との平均距離は1.14AU(約1億7000万km)火星との平均距離は1
140アナーキーさん
垢版 |
2019/06/22(土) 14:28:49.80
0.72=0.28AU(約4200万km)になります
しかし平均公転半径の差は2惑星が最接近している時の距離に近いものであり2つの惑星の間で常に
0.28AUという距離が保たれている訳ではありませんそのためどれが最も近い惑星なのかを平均
公転半径の差だけで決定する定説に対してロスアラモス国立研究所で研究助手を務めるTom St
ockman氏ら3人が異を唱えています
3人は惑星間の平均距離をより正確に捉えるためにポイントサークル法(Point Circle
MethodPCM)という新しい計算方法を提唱していますPCMでは各惑星の軌道を平均半径
をもつ同一平面上の同心円と仮定します3人は私たちの住む太陽系ではこの仮定はあながち間違って
おらず8つの惑星は2.6度±2.2度の軌道傾斜を持ち平均軌道離心率は0.06±0.06です
とコメントしています
以下の図aは2つの惑星の軌道を示したものc1は平均軌道半径=r1とする内惑星の軌道でc2は
平均軌道半径=r2とする外惑星の軌道です惑星は軌道円上を常に一定の公転速度で動いているため
惑星が軌道上のどの位置にいるのかという確率分布は一様だと考えられますそこで3人は図bに示さ
れるようなc2上の任意の点(左の円)からc1上のすべての点(右の円群)までの距離の平均を新
しい2惑星間の平均距離として数学的に定義しました
計算の結果地球と金星との平均距離は1.14AU(約1億7000万km)火星との平均距離は1
141 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:28:51.30
0.72=0.28AU(約4200万km)になります
しかし平均公転半径の差は2惑星が最接近している時の距離に近いものであり2つの惑星の間で常に
0.28AUという距離が保たれている訳ではありませんそのためどれが最も近い惑星なのかを平均
公転半径の差だけで決定する定説に対してロスアラモス国立研究所で研究助手を務めるTom St
ockman氏ら3人が異を唱えています
3人は惑星間の平均距離をより正確に捉えるためにポイントサークル法(Point Circle
MethodPCM)という新しい計算方法を提唱していますPCMでは各惑星の軌道を平均半径
をもつ同一平面上の同心円と仮定します3人は私たちの住む太陽系ではこの仮定はあながち間違って
おらず8つの惑星は2.6度±2.2度の軌道傾斜を持ち平均軌道離心率は0.06±0.06です
とコメントしています
以下の図aは2つの惑星の軌道を示したものc1は平均軌道半径=r1とする内惑星の軌道でc2は
平均軌道半径=r2とする外惑星の軌道です惑星は軌道円上を常に一定の公転速度で動いているため
惑星が軌道上のどの位置にいるのかという確率分布は一様だと考えられますそこで3人は図bに示さ
れるようなc2上の任意の点(左の円)からc1上のすべての点(右の円群)までの距離の平均を新
しい2惑星間の平均距離として数学的に定義しました
計算の結果地球と金星との平均距離は1.14AU(約1億7000万km)火星との平均距離は1
142 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:28:51.73
0.72=0.28AU(約4200万km)になります
しかし平均公転半径の差は2惑星が最接近している時の距離に近いものであり2つの惑星の間で常に
0.28AUという距離が保たれている訳ではありませんそのためどれが最も近い惑星なのかを平均
公転半径の差だけで決定する定説に対してロスアラモス国立研究所で研究助手を務めるTom St
ockman氏ら3人が異を唱えています
3人は惑星間の平均距離をより正確に捉えるためにポイントサークル法(Point Circle
MethodPCM)という新しい計算方法を提唱していますPCMでは各惑星の軌道を平均半径
をもつ同一平面上の同心円と仮定します3人は私たちの住む太陽系ではこの仮定はあながち間違って
おらず8つの惑星は2.6度±2.2度の軌道傾斜を持ち平均軌道離心率は0.06±0.06です
とコメントしています
以下の図aは2つの惑星の軌道を示したものc1は平均軌道半径=r1とする内惑星の軌道でc2は
平均軌道半径=r2とする外惑星の軌道です惑星は軌道円上を常に一定の公転速度で動いているため
惑星が軌道上のどの位置にいるのかという確率分布は一様だと考えられますそこで3人は図bに示さ
れるようなc2上の任意の点(左の円)からc1上のすべての点(右の円群)までの距離の平均を新
しい2惑星間の平均距離として数学的に定義しました
計算の結果地球と金星との平均距離は1.14AU(約1億7000万km)火星との平均距離は1
143アナーキーさん
垢版 |
2019/06/22(土) 14:28:53.15
0.72=0.28AU(約4200万km)になります
しかし平均公転半径の差は2惑星が最接近している時の距離に近いものであり2つの惑星の間で常に
0.28AUという距離が保たれている訳ではありませんそのためどれが最も近い惑星なのかを平均
公転半径の差だけで決定する定説に対してロスアラモス国立研究所で研究助手を務めるTom St
ockman氏ら3人が異を唱えています
3人は惑星間の平均距離をより正確に捉えるためにポイントサークル法(Point Circle
MethodPCM)という新しい計算方法を提唱していますPCMでは各惑星の軌道を平均半径
をもつ同一平面上の同心円と仮定します3人は私たちの住む太陽系ではこの仮定はあながち間違って
おらず8つの惑星は2.6度±2.2度の軌道傾斜を持ち平均軌道離心率は0.06±0.06です
とコメントしています
以下の図aは2つの惑星の軌道を示したものc1は平均軌道半径=r1とする内惑星の軌道でc2は
平均軌道半径=r2とする外惑星の軌道です惑星は軌道円上を常に一定の公転速度で動いているため
惑星が軌道上のどの位置にいるのかという確率分布は一様だと考えられますそこで3人は図bに示さ
れるようなc2上の任意の点(左の円)からc1上のすべての点(右の円群)までの距離の平均を新
しい2惑星間の平均距離として数学的に定義しました
計算の結果地球と金星との平均距離は1.14AU(約1億7000万km)火星との平均距離は1
144アナーキーさん
垢版 |
2019/06/22(土) 14:28:54.45
0.72=0.28AU(約4200万km)になります
しかし平均公転半径の差は2惑星が最接近している時の距離に近いものであり2つの惑星の間で常に
0.28AUという距離が保たれている訳ではありませんそのためどれが最も近い惑星なのかを平均
公転半径の差だけで決定する定説に対してロスアラモス国立研究所で研究助手を務めるTom St
ockman氏ら3人が異を唱えています
3人は惑星間の平均距離をより正確に捉えるためにポイントサークル法(Point Circle
MethodPCM)という新しい計算方法を提唱していますPCMでは各惑星の軌道を平均半径
をもつ同一平面上の同心円と仮定します3人は私たちの住む太陽系ではこの仮定はあながち間違って
おらず8つの惑星は2.6度±2.2度の軌道傾斜を持ち平均軌道離心率は0.06±0.06です
とコメントしています
以下の図aは2つの惑星の軌道を示したものc1は平均軌道半径=r1とする内惑星の軌道でc2は
平均軌道半径=r2とする外惑星の軌道です惑星は軌道円上を常に一定の公転速度で動いているため
惑星が軌道上のどの位置にいるのかという確率分布は一様だと考えられますそこで3人は図bに示さ
れるようなc2上の任意の点(左の円)からc1上のすべての点(右の円群)までの距離の平均を新
しい2惑星間の平均距離として数学的に定義しました
計算の結果地球と金星との平均距離は1.14AU(約1億7000万km)火星との平均距離は1
2019/06/22(土) 14:28:54.95
            /: :/ :/: : :〃/  メ: : \ : ヽ:∨: i: : :!:|: : i : ∧
         ‖:‖/ : /、/,,イ'゙フハヾ : \:}: :|彡i : :',:! : :!: : : i
        /! : |:>< //  i::ひ::} 》 ` i::|> :ハ : : |: : |: : :',|
        i:| : :V心レ'´   ゞ='゙    リ! / ⌒ヽ、 : ! : |: : : i!
        |ハ : {i!ヒリ            /ノ ) ) } ∨:|: :|: : : :|
         i /\:、 丶    ノヽ    /   __ノ   V!: | : : : ',
          !‖ ハ   f7     i     ´/´     i: |、 : : : ',
        | l :/ : ヘ   '、   ノ.  ,イ  !       |: |ヽ: : : :ヽ
        |:|/ : : | |`   `ー‐   /  __|_       !: ! ヽ: : : : :\
         l/ : : :| !   ` ー‐r' -‐ ''   ヽ_ -─-、 |: |  \ : : : : ヽ
146アナーキーさん
垢版 |
2019/06/22(土) 14:28:56.34
0.72=0.28AU(約4200万km)になります
しかし平均公転半径の差は2惑星が最接近している時の距離に近いものであり2つの惑星の間で常に
0.28AUという距離が保たれている訳ではありませんそのためどれが最も近い惑星なのかを平均
公転半径の差だけで決定する定説に対してロスアラモス国立研究所で研究助手を務めるTom St
ockman氏ら3人が異を唱えています
3人は惑星間の平均距離をより正確に捉えるためにポイントサークル法(Point Circle
MethodPCM)という新しい計算方法を提唱していますPCMでは各惑星の軌道を平均半径
をもつ同一平面上の同心円と仮定します3人は私たちの住む太陽系ではこの仮定はあながち間違って
おらず8つの惑星は2.6度±2.2度の軌道傾斜を持ち平均軌道離心率は0.06±0.06です
とコメントしています
以下の図aは2つの惑星の軌道を示したものc1は平均軌道半径=r1とする内惑星の軌道でc2は
平均軌道半径=r2とする外惑星の軌道です惑星は軌道円上を常に一定の公転速度で動いているため
惑星が軌道上のどの位置にいるのかという確率分布は一様だと考えられますそこで3人は図bに示さ
れるようなc2上の任意の点(左の円)からc1上のすべての点(右の円群)までの距離の平均を新
しい2惑星間の平均距離として数学的に定義しました
計算の結果地球と金星との平均距離は1.14AU(約1億7000万km)火星との平均距離は1
147アナーキーさん
垢版 |
2019/06/22(土) 14:29:00.34
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
148 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:29:01.98
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
149アナーキーさん
垢版 |
2019/06/22(土) 14:29:03.24
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
150アナーキーさん
垢版 |
2019/06/22(土) 14:29:05.56
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
151アナーキーさん
垢版 |
2019/06/22(土) 14:29:15.37
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
152 [Φ|(|´|Д|`|)|Φ] BBxed!! アナーキーさん
垢版 |
2019/06/22(土) 14:29:18.97
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
153アナーキーさん
垢版 |
2019/06/22(土) 14:29:20.06
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
154アナーキーさん
垢版 |
2019/06/22(土) 14:29:27.04
70AU(約2億5500万km)だったのに対して水星との平均距離は1.04AU(約1億5
500万km)だったことがわかりましたこのことから地球に最も近い惑星は水星であるとStoc
kman氏らは論じています
同時にStockman氏らはPyEphemと呼ばれるPythonライブラリを使用して太陽系
内の8つの惑星すべての位置についてシミュレーションを行い10年間の平均測定距離をPCMでの
計算結果と比較しましたシミュレーションを動かしている様子は以下のムービーの6分40秒辺りか
ら見ることができます
以下の表は各惑星間の平均距離を上からシミュレーションによる算出PCMによる算出従来の方法に
よる算出の3つで示したものシミュレーションによって導き出された距離とPCMによって算出され
た距離がほとんど同じであることがよくわかります
さらに3人はこの結果から内側の物体の軌道半径が小さいほど同心円状に移動する物体間の平均距離
は短くなるという推論を展開しています完全に証明されているわけではありませんがこの推論に基づ
けば最も内側を公転する水星はその他すべての惑星にとって最も近い惑星ということになります
3人によるとPCMを用いることで周回する任意の物体の平均距離を素早く見積もることができ例え
ば信号強度が距離の2乗に比例して低下する衛星通信網をすみやかに検証するのに役立つとのことい
ずれにせよ少なくとも金星が私たちの最も近い隣人ではないことそして水星がみんなの隣人であるこ
■ このスレッドは過去ログ倉庫に格納されています
5ちゃんねるの広告が気に入らない場合は、こちらをクリックしてください。

ニューススポーツなんでも実況